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Introduction
• Develop deep learning techniques for mean field games and optimal transport.

• Inspired by the Hopf-Lax formula in density space, we introduce the Wasser-
stein proximal operator for generative adversarial networks.

• This poster presents the relaxed Wasserstein proximal operator (RWP),
which is an easy to implement modification that gives faster and more stable
training of generative models.

Natural Gradient
• The natural gradient is a gradient descent scheme which chooses the descent

direction to be invariant to different coordinate changes.

• In deep learning, given a step-size α, a model parameterized by θ, and a loss
function L, then the steepest descent is:

δ∗ = argmin{δ:D(pθ‖pθ+δ)=α}L(θ + δ)

where D is often chosen as the Kullback–Leibler divergence

D(p‖q) =

∫
p(x) log

p(x)

q(x)
dx

Wasserstein Proximal
The Wasserstein proximal utilizes the natural gradient but with the Wasserstein-2
distance:

δ∗ = argmin{δ:dW (pθ‖pθ+δ)2=α}L(θ + δ)

Theorem 1 (Constrained Wasserstein-2 metric). The constrained Wasserstein-2
metric function dW : Θ×Θ→ R+ has the following formulation:

dW (θ0, θ1)2 = inf
{∫ 1

0

∫
Rn
‖∇Φ(t, x)‖2ρ(θ(t), x)dxdt :

∂tρ(θ(t), x) +∇ · (ρ(θ(t), x)∇Φ(t, x)) = 0, θ(0) = θ0, θ(1) = θ1

}
where the infimum is among all feasible Borel potential functions Φ: [0, 1]×Rn → R
and continuous parameter paths θ : [0, 1]→ Rd.
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The Wasserstein proximal penalizes parameter steps in proportion to the mass
being transported, which results in updates pointing towards the minimum of the
loss function. The Euclidean proximal penalizes all parameters equally, which
results in updates naively orthogonal to the level sets of the loss function.

Generative Adversarial Networks
• Generative Adversarial Networks (GANs) mimic the probability distribution

from the training data. When properly trained, they can generate samples
that look like the training data.

• GANs consist of two neural networks: The discriminator Dω, and the gener-
ator Gθ. The job of of the generator is to generate “fake" samples, and the
job of the discriminator is to decide whether an image is real (i.e. from the
training data), or fake (i.e. from the generator).

• An example of artificial faces generated by GANs:

• (Standard) GAN loss function:

max
D

min
G

Ex∼real[logD(x)] + Ez∼N [log 1−D(G(z))]

• In order to obtain a quantitative evaluation of generated samples, we used
the Fréchet Inception Distance (FID) [2] to measure the quality of samples.

RWP Algorithm

• The RWP algorithm is meant as a drop-in regularizer. You train your GAN
in the usual way with a slight modification:

• The algorithm is as follows:

– Sample real data {xi}Bi=1 and noise data {zi}Bi=1

– Do

ωk+1 ← Optimizerω
{
Loss(Dωk({xi}Bi=1), Dω(Gθ({zi}Bi=1)))

}
– Sample noise data {zi}Bi=1

– Do

θk+1 ← Optimizerθ

{
Loss(Gθ({zi}Ni=1)) +

1

B

B∑
i=1

‖Gθ(zi)−Gθk(zi)‖2
}

– Repeat until convergence.

• Experimentally, RWP gives better and faster convergence (wallclock time).

Experiments on GANs

The effect of using RWP regularization, on the CIFAR-10 dataset. The experi-
ments are averaged over 5 runs. The bold lines are the average, and the enveloping
lines are the minimum and maximum.

The effect of Relaxed Wasserstein
Proximal (RWP) regularization on
Standard GANs, on the CelebA
dataset. The experiment was aver-
aged over 5 runs. The bold lines are
the average, and the enveloping lines
are the minium and maximum. Here
we see RWP regularization improves
the speed (via wallclock time), and
achieves a lower FID.

An experiment demonstrating the
effect of performing 10 generator
iterations per outer-iteration with
and without RWP, where an outer-
iteration is a single loop of: a num-
ber of discriminator iterations, then a
number of generator iterations.
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